Sleep Sensors for Older Adults Residing in a Dementia Special Care Unit: Feasibility and Preliminary Sleep Assessment Efficacy

Jarod T. Giger, William Schweinle, and Stacy Smallfield
Why investigate sleep on a SCU?

- Alzheimer’s disease (AD) is a neurodegenerative disorder and the most common form for dementia
 - Approximately every 60 seconds someone in the U.S. develops AD
 - 5.2 million Americans have AD in 2013
 - 16 million Americans by 2050 (Alzheimer’s Association, 2013)

- The majority of people with dementia will eventually reside in a nursing home (Smith, Kokmen, & O’Brien, 2000)
 - Sleep disturbances contribute to nursing home placement (Pollack & Perlick, 1991)
How does sleep impact AD?

- Sleep disturbances are common in AD
 - Impacts cognitive and physical functioning (Dauvilliers, 2007)

- Poor sleep leads to other health problems (Cricco, Simonsick & Foley, 2001; Brassington, King & Bliwise, 2000; Manabe, Matsui, Yamaya et al., 2000)
 - Predictor of:
 - Cognitive decline
 - Falls
 - Increased 2-year mortality
What is a common approach to SCU sleep assessment?

- Actigraphic measured wrist activity is a wearable sensor
 - Obtains sleep data among nursing home residents with dementia but this technology presents challenges in assessment

- Assessing longitudinal sleep data among older adults with moderate to severe dementia presents several methodological challenges
 - High incidents of neuropsychiatric symptomatology
What is the limitation of the actigraph technology?

- Active technology
 - On person or wearable

- Advances in sensor technology and data processing in ballistocardiography-based system enable passive measurement of sleep in older adults
 - Compliance
 - Safety
Our approach to sleep assessment?

- Technological and data processing advances
 - Improve quality of life and overall wellness by tracking activities of daily living (ADLs) and key conditions (Alwan et al., 2006; Wang et al., 2009; Zhou et al., 2009)

- Recording physiological data in real-life situations could be particularly useful
 - Identification and management of chronic health conditions or problems (Korhonen, Parkka & Van Gils, 2003)
Study Technology

- Healthsense® WellAware® Non-invasive Analysis of Physiological Signals sleep analysis system (NAPS; Healthsense, 2014)
 - Passive (Edge, Taylor, Dewbury & Groves, 2000)
 - Unobtrusive system that collects sleep data from older adults in their environment (Hensel, Demiris & Courtney, 2006)
Healthsense WellAware
Systems sleep sensor network

- Bed and motion sensor
- NAPS bedbox
- Data manager that transmits sleep data via wireless broadband
NAPS Key Sleep Areas

- Sleep disruptions
 - Restless

- Rest efficiency
 - Restful

- Rest continuity
 - Length of restful periods

- These sleep area factors infer, through continuous data collection and learning, whether a resident experiences *healthful sleep hygiene*, for either a single night or a defined period of time.
Present Research

- No known study has examined the possibility and usefulness of installing the NAPS system on a SCU for memory impaired older adults.

Purpose

- Investigate the feasibility and preliminary efficacy of installing the NAPS system on a SCU for older adults with moderate to severe dementia.
 - Feasibility
 - Relationships among health functioning and sleep
Method

Participants

- 10 older adults aged 68 to 95 years (56% of SCU)

Procedure:

- Sleep sensor data (efficiency, disruptions, continuity) continuously were collected from December 6th, 2012 to February 6th, 2013
 - variance

- Health (BMI) and cognitive/mood functioning data (PHQ-9, BIMS, FAST) were collected at baseline from clinical record

- Sleep and neuropsychiatric assessment data (PSQI & NPI-NH) were collected at baseline, posttest at one month, and follow up at two months
SCU bedroom installation
Statistical Analyses

- One sample Wilcoxon Sign Rank Test to test sleep/wake ground truth (Pickles, 1995)

- Robust Statistical procedures (Erceg-Hurn & Mirosevich, 2008)
 - Modern non-parametric statistics (Higgins, 2004)
 - Bootstrap resampling (Efron & Tibshirani, 1993)

- Spearman Correlations using Bootstrap resampling procedures to test for health and sleep associations
 - 10,000 resamples to produce robust 95% CI’s to increase the pilot’s power
Characteristics of Participants (N = 10)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>n</th>
<th>%</th>
<th>M (SD)</th>
<th>BCa 95% CI</th>
<th>Mdn</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>10</td>
<td>--</td>
<td>84.30 (8.58)</td>
<td>(78.50, 89.90)</td>
<td>84.00</td>
<td>68-95</td>
</tr>
<tr>
<td># of days on unit</td>
<td>10</td>
<td>--</td>
<td>969.60 (992.17)</td>
<td>(415.00, 1760.53)</td>
<td>591.00</td>
<td>107-3401</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>9</td>
<td>90.0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Male</td>
<td>1</td>
<td>10.0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Marital status</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Married</td>
<td>3</td>
<td>30.0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Never married</td>
<td>1</td>
<td>10.0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Widowed</td>
<td>6</td>
<td>60.0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Education level</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Less than H.S.</td>
<td>3</td>
<td>30.0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>H.S Graduate</td>
<td>4</td>
<td>40.0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Some college</td>
<td>2</td>
<td>20.0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Bachelor’s degree</td>
<td>1</td>
<td>10.0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>
Preliminary Findings

➢ No technology or human factor concerns regarding the NAPS System were reported

 o One instance of system-wide equipment issues over the course of the 63-day study (1.6%)

 o 70% double-occupancy bedroom ($n = 7$)

➢ Significant relationships among health status and sleep
Preliminary Findings

- Subjective sleep assessment (PSQI) was reliable but not valid

Month 1
- Staff subjective *bedtime* estimates ($Mdn = 8:30p$) were significantly different from sensor estimates ($Mdn = 7:52p$)

- Subjective *wake time* estimates ($Mdn = 6:30a$) and sensor wake time estimates ($Mdn = 6:41a$) were significantly different

Month 2
- Staff subjective *bedtime* estimates ($Mdn = 7:30p$) were significantly different from sensor estimates ($Mdn = 8:15p$)

- Subjective *wake time* estimates ($Mdn = 6:07a$) and sensor wake time estimates ($Mdn = 7:36a$) were significantly different
Associations with Sleep Sensor Data

<table>
<thead>
<tr>
<th>Measure</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Sleep efficiency variability</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Sleep disruption variability</td>
<td>ns</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Sleep continuity variability</td>
<td>.68* [.49, .94]</td>
<td>ns</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 PSQI</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 FAST</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>.71* [.53, .95]</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 PHQ-9</td>
<td>ns</td>
<td>ns</td>
<td>.54 [.13, .80]</td>
<td>ns</td>
<td>.49 [.06, .84]</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 BIMS</td>
<td>ns</td>
<td>ns</td>
<td>-.67* [-.98, -.08]</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 NPI-NH</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>.66* [.36, .94]</td>
<td>ns</td>
<td>ns</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 NPI-NH OD</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>.63 [.36, .89]</td>
<td>ns</td>
<td>ns</td>
<td>.97** [.77, 1.00]</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>10 BMI</td>
<td>ns</td>
<td>.75* [.25, .99]</td>
<td>.83** [.39, 1.00]</td>
<td>ns</td>
<td>ns</td>
<td>.46 [.00, .77]</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>--</td>
</tr>
</tbody>
</table>
Why is the NAPS system feasible?

- Passive and unobtrusive nature of the technology
- Negligible environmental impact
- Improved precision of sleep
 - Ground truth
Why the relationships?

- Cognition, weight, mood and sleep
- AD stage and neuropsychiatric symptoms
- Future research required to replicate and systematically evaluate these possibilities
Conclusions

- Feasible to install the NAPS system on a SCU for older adults with moderate to severe dementia

- Health status and sleep variability are important “vital signs”

- Objective sleep assessment is possible